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Abstrac:t-The static response of cross-ply laminated shallow shells subjected to thermal loadings
is investigated. An exact analytical solution using the state space approach is presented in con
junction with the Levy method. for doubly curved, cylindrical and spherical shells under various
boundary conditions. Numerical results of the higher-order theory of Reddy and Liu (1985. (987)
for center deflection of cross-ply laminated shallow shells are compared with those obtained using
classical and first-order shell theories.

INTRODUCTION

The increased use of composite materials in aerospace and mechanical engineering struc
tures is due to their high stiffness- and strength-to-weight ratio and to their anisotropic
material property. Studies involving the thermoelastic behavior of composite plates and
shells have been receiving greater attention in recent years [see Pell (1946), Stavsky (1963),
Reddy and Hsu (1980), Wu and Tauchert (1980a,b), Kalam and Tauchert (1978), Avery
and Herakovich (1986), Hyer and Cooper (1986) and Kardomateas (1989»). The available
results for the thermoelastic bending of laminates allow one to infer that the closed-form
solutions involving various static problems were developed mainly for simply-supported
edge conditions, and approximate methods were used for other boundary conditions. In this
connection, a technique allowing one to obtain closed-form solutions for other boundary
conditions is needed.

The objective of the present study is to investigate the thermal response behavior of
laminated, cross-ply, composite shell panels using the third-order shell theory and to
compare the results with those obtained using the classical and first-order shell theories.
Analytical solutions of the theories are obtained using the state-space technique in con·
junction with the Levy method, allowing one to analyze the problems for a variety of
boundary conditions. The exact solutions are presented to show the effects of variations in
geometry, shallowness, lamination parameters and boundary conditions and the shear
deformation on the thermal response of statically loaded layered anisotropic composite
shell panels.

GOVERNING EQUATIONS

The third order theory (HSOT) used in the present study is based on the following
displacement field [see Reddy and Liu (1985, 1987)]:

_ ( ( ) 3 4 ( lOW)v = 1+- V+(cP2+( -2 -cP2---
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where (u, f, ~,) are the displacements along the orthogonal curvilinear coordinates such that
the e I and e2-curves are lines of principal curvature on the midsurface ( = 0, and the
(-curves are straight lines perpendicular to the surface' = 0, (u, t" w) are the displacements
of a point on the middle surface, and cPl and cP2 are the rotations at , = 0 of normals to
the mid-surface with respect to the e2 and el-axes, respectively. The parameters R I and R 2

denote the values of the principal radii of curvature of the middle surface, and YI and '/1
are the surface metrics defined in Reddy (1984). AU displacement components
(u, t" W, cPl> 4>2) are functions of (e I> ~2)'

Substituting eqn (I) into the strain-displacement relations of a shell referred to an
orthogonal curvilinear coordinate system, we obtain:

£1 = e?+(,,?+(2/(D

e2 =e~+("g+(2"D

£4 = e~+,2,,~

e5 = eg +(2,,;

(2)

where

(3)

Here, x/denote the Cartesian coordinates (dx, = yjde"i = 1,2),andcl = 4/h2andc2 = ctl3.
The stress-strain relations for the kth lamina are given by:

Qlk)
II

Symm.

Qlkl 0 0 0 £1-aWAT12

Qikl 0 0 0 £2 -aik~AT22

Q1k l 0 0 £6 (4)66

Q(k1 0 £4H

Q1kl e5ss

where Q:11 are the material coefficients of the kth lamina in t~e laminate co~rdinate sy.stem
and a(k l and a.1N are the coefficients of linear thermal expansion for layer k m the lammateII __

coordinates; AT denotes the temperature rise in the laminate and is given by:

(5)

Using Hamilton's principle, the governing equations appropriate for the displacement field
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(I) and the constitutive equation (4) are derived in Reddy and tiu (1985) as:

eN, + aN6 =0
CXI CX2

055

(6)

where q is the distributed transverse mechanical load, and N1 and M;, etc., are the stress
resultants,

N 1'·(N;,M/,P/) = L O'lk)(I,C,C)dC
k_ 1 ,"-1

(Q"K1) = f. r'· 0'~k)(I,C2)dC
k. I Je. -I

(i= 1,2,6),

(7)

The resultants are related to the total strains by the equations

NI = A;jf.J+BljKJ +EtjK} - NT

M I = B/jf.J+D/jKJ+F;jK}-MT. (i,j= 1,2,6)

p/ = E/Jf.J+FIjKJ+Hij"l-pJ' (8)

Q2 = A4j f.J+D 4J"J

Ql = ASjf.J+ Dsj"J

K2 = D4J f.J +F4J K} , (j = 4,5)

K I =Dsjf.J+Fsj"J (9)

where At}, Blj, etc., are the laminate stiffnesses,

for i, j = 1,2,4,5.6.

and the thermal forces and moments are defined by

(10)

(11)

For the sake of completeness and comparison, the governing equations of the classical
(CST) and the first-order (FSDT) shell theories are also presented.
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I. Classical theory (CST)

A. A. KHDEJR et al.

eNI eN6
-~-+-=o
eXI ex:
eN6 eN,
-~-+--=o
eXI ox:

o:M o:M iJ:M, N N,
1+ 6 - 1 • °--, +--, ----+q=

CXj ex, ex: OXi R, R: . (12)

The resultants Nj and M, are given in eqns (7) and (8) with Elj = F'i = 0, where the
displacement functions ¢ 1 and ¢: in this case are to be replaced by the expressions:

ow
¢i = - - (i = 1,2).

aXj

2. First-order theory (FSDT)

aNI oN6--+--=0ox, (]x:

DN6 aN,._-- + _..:: = 0ax, ax:

( 13)

The resultants (Nj , M,) can be expressed in terms of the strains as In eqns (8) with
E'i = F., = O. The resultant shear forces Q, and Q2 are given by:

( 14)

where K~ and K; are the shear correction factors.

SOLUTION PROCEDURE

A generalized Levy type solution, in conjunction with the state space approach is used
to analyze the thermal bending of cross-ply laminated shallow shells. The edges X2 = 0, b
are assumed to be simply supported, while the remaining ones (x I = ±a/2) may have
arbitrary combinations of free, clamped and simply-supported edge conditions. We express
the generalized displacements as products of undetermined functions and known trigono
metric functions so as to identically satisfy the simply-supported boundary conditions



at Xz = O.b:
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U=w=<p,=N;==Mz=Pz=O for HSOT

U = Hi = <PI =Nz =M 2 = 0 for FSOT

U = Hi = N 2 = fl-[z = 0 for CST.
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(15)

A sinusoidal distribution of the thermal loadings will be considered, which in the present
case takes the form :

(16)

where (X = 1T./(X and p = 1T./b in all the numerical results and the mechanical loading q is
considered to be zero throughout the analysis.

The displacement quantities will be represented as:

U(X"X2)

l'(X,.Xz)

l"'(..l' I~.x2) =:

<p,(X"X2)

<P2(X,.X2)

U(x,)sinpx 2

V(x,)cos PX2

W(x,)sinpx 2

X(x,) sin PX2

y(X,) cos PX2

(17)

The representation (17) is valid for HSOT, FSOT ,lnd CST. Substitution of eqn (17) into
the governing equations of the three theories. we obtain five differential equutions for HSOT
and FSOT and three difTerential equations for CLT. [n order to represent the system of
difli:rential equations in the form needed for the state-space approach. the following
variables are introduced:

HSOT

2, == U. 2 2 = U', 2] = V, 2 4 = V'. 2, == W. 2 6 == W'.

2, = W". 2 8 == W"', 2'/ =X, 2'0 = X'. 2" = Y. 2'2 == Y'; (18)

FSDT

2, == U. 2 2 == U', 2 l = V, 2 4 = V', 2, = W. 2 6 = W',

Z, == X. Zg = X'. 2 9 = Y. 2 10 = Y';

CST

2 1 = U, 2 2 = U'. 2] == V. 2 4 = V',

2, = W. 2 6 = W', 2, = W". 2 8 = W"',

(19)

(20)

where the primes over the variables indicate differentiation with respect to x I' The differ
ential equations take the form :

Z' = B2+r (21)

where the matrix [8] is defined in Appendix I for HSOT, FSOT and CST. The load vector
r is defined as:

HSOT



658

FSDT

CST
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where the coefficients 9,.9c ..... 95 are defined in Appendix II for the three theories.
The solution to eqn (21) is [see Reddy and Khdeir (1989. 1990)]

(24)

(25)

Here K is constant column vector to be detennined from the edge conditions while eS'1 is
expressed as:

[

eAI
"

eB'1 = [5] 0 (26)

where. n = 12 for HSDT. n = 10 for FSDT and" = 8 for CST. )., denote the distinct
eigenvalues of [B]. while [5] denotes the matrix of eigenvectors of [8].

The boundary conditions for simply-supported (5). clamped (C) and free (F) at the
edges x I = ±a/2 for the three theories are:

HSDT

('II'
e: 1I = l' = II' = . = ¢ [ = (P 2 = 0ax,

F: N I = NI I = PI = N I> = AI" - C 2 PI> = 0

FSDT

CST

5: v = It' = if) 2 = N I = J/, = 0

e: /I = l' = II' = (P I = (P c = 0

F: N, = /I..f l = QI = No = JI" = 0

5: l' = It' = N 1 = J1 1 = 0

i'll'e· /I = l' = II' = .' = 0
. (hI

F: N I = ,".1, = N, = 0

(JAIl eM,
-- +2~··· = o.
eX I (Xc

(27)

(28)

(29)

NUMERICAL RESULTS AND CO:-';CLUSIONS

Numerical results are displayed to obtain the trend of variation in the thennal response
with the variation of geometry. lamination and boundary conditions. The non-dimension-
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alized center deflection of cross-ply cylindrical. spherical and doubly-curved panels for the
lamination schemes (0/90), (0/90 0) and (0/90/ ... 10 layers) have been displayed, for
various combinations of boundal}' conditions in Tables 1-3 and Figs 1-6. It was assumed
that the thickness and the material for all the laminae are the same, having the following
characteristics:

Table I. Non-dimensionalized center deflections Ii' of (0/90) cylindrical shells subjected to sinusoidal
temperature distributed load for various boundary conditions (alb = I. a'h = 10. R, = ~. Rz = R)

Ria Theory SSSS SSSC SSCC SSFF SSFS SSFC

HSOT l.l235 0.7441 0.5158 1.2617 1.2001 0.1750
5 FSOT 1.1248 0.7551 0.5297 1.2657 1.2028 0.7858

CST l.l280 0.7091 0.4703 1.2550 1.2013 0.7446

HSOT 1.1421 0.7544 0.5177 1.2680 1.2112 0.7760
10 FSOT 1.1439 0.7658 0.5319 1.2722 1.2142 0,7871

CST 1.1447 0.7161 0.4702 1.2616 1.2117 0.7435

HSOT 1.1482 0.7583 0.5169 1.2694 1.2145 0.7738
50 FSOT 1.1501 0.7699 0.5312 1.2738 1.2176 0.7851

CST l.l501 0.7183 0.4687 1.2638 1.2151 0.7403

HSOT 1.1485 0.7586 0.5164 1.2693 1.2145 0.7728
Plate FSOT 1.1504 0.7703 0.5307 1.2736 1.2176 0.7842

CST 1.1504 0.7183 0.4681 1.2639 1.2152 0.7392

Table 2. Non·dimensiomllizl.'tJ center dellections », of (Uj90) spheric:11 shclls suojl."Cted to sinusoidal
temperature distribuled load fur various houndary conditiuns (ml> = I. allr ,. 10)

Ria Thc(lry SSSS SSSC SSCC SSFt' SSFS SSFC

IIS0T l.u545 0.6737 0,214K 1.I'J65 1.1310 U.7101
5 FSOT 1.0546 O.6KOK 0.2097 1.19K7 l.l322 0,7173

CST 1.0660 0.654') 0.2540 I.I l }(),) 1.1366 0.69111

flSOT 1.1235 0.7287 0.3677 1.2524 1.1935 0.7518
10 FSDT 1.1248 0.73K8 0.3711 1.2561 1.1960 0.7617

CST 1.1280 0.6'>65 0.3666 1.2449 1.1946 0.7236

IISDT 1.1475 0.7550 O.4IN7 1.2693 1.2140 0,7705
50 FSDT 1.1493 0.7665 0.5020 1.2736 1.2171 0.7817

CST 1.1494 0.7157 0.4499 1.2632 1.2144 0.7375

HSDT 1.1485 0.75l!6 0.5164 1.2693 1.2145 0.7728
Plate FSDT 1.1504 0.7703 0.5307 1.2736 1.2176 0.7ll42

CST 1.1504 0.7183 0.4681 1.2639 1.2152 0.7392

Table 3. Non·dimensionalized center dt:flections Woften.layer (0/901 ... ) cylindrical shells subjectl.-d
to sinusoidal temperature distributed load for various boundary conditions (a/b = I. u/h =10,

R, = CG, Rz = R)

R/a Theory SSSS SSSC SSCC SSFF SSFS ssrc
HSDT 1.0216 0.7032 0.4849 1.0666 1.0480 0.6854

5 FSDT 1.0215 0.7087 0.4917 1.0670 1.0482 0.6909
CST 1.0247 0.6189 0.3905 1.0643 1.0492 0.6206

HSOT 1.0303 0.7082 0.4874 1.0705 1.0537 0.6884
10 FSOT 1.0302 0.7138 0.4942 1.0709 1.0539 0.6940

CST 1.0310 0.6214 0.3913 1.0671 1.0533 0.6218
HSOT 1.0332 0.7099 0.4880 1.0718 1.0555 0.6892

50 FSOT 1.0330 0.7156 0.4950 1.0722 1.0557 0.6949
CST 1.0331 0.6222 0.3914 1.0680 1.0546 0.6219

HSOT 1.0333 0.7101 0.4880 1.0718 1.0556 0.6892
Plate FSOT 1.0331 0.7157 0.4949 1.0722 1.0558 0.6949

CST 1.0331 0.6222 0.3914 1.0681 1.0546 0.62\9

$AS 29:5-\
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Fig. I. Non-dimensionalized center deflection versus side to thickness ratio of (0/90) spherical shells
subjected to sinusoidal temperature distributed load for SSSS. SSSC and SSCC boundary conditions

(alh = I. R, = R, = 5a).

The shear correction factors (K~ = K;) for the first-order shear deformation shell theory
(FSDT) are taken to be 5/6. The following non-dimensionalized dencction parameter has
been used throughout the calculations:

10
li' = w«) hi") ._ ...

• - :Xlflh~'

where To and q are considered to be zero. The notation SSFC. for example. means that the
edgeS.\"2 = O,h are simply supported. x/ ::::: -a/2 is clamped andx, ::::: Ij2isfree.lnaddition
to the effects played by the boundary conditions on the thermal response. the numerical

1.3

1.1
-HSDT
-- FSOT
._-- CST

Vi 0/90 SSSF

0.9

----- .. -
07

SSCF

as
0 4 e 12 16 20

o/h

Fig. 2. Non-dimensionalized center deflection versus side to thickness ratio of (0/90) spherical shells
subjected to sinusoidal tempcraturedistributed load for SSSF. SSCF and SSFF boundary conditions

(alh = I. R, = R, = 5a).
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ssss

0.4

________ SSSC

0.2 - - - - --- - - - -- - - - - -~---- SSCC

o--_.......__........ "'--__-'-__~
o 4 8 12 16 20

a/h

fig. 3. Non-dim.:nsionalized center deflection versus side to thickness ratio of (0/90/0) spherical
shells subjected to sinusoidal temperature distributed load for SSSS. SSSC and SSCC boundary

conditions (ll/h == l. R l == R2 =' Sa).

results allow one to conclude the following:

(I) For thick pands the clrect of transverse shear deformation is alw,lys to be incorporated
into the analysis. because CST underpredicts the panel response whcn comparcd to
FSDT amI HSDT. An exception to this observation is Jlrovided by the SSSS boundary
I.:ondilions. The.: dcl1c.:ctions predicted by the classical shell the.:ory ditTer by about 6'%
at the mosl.

(2, For all lalllim'lion sche.:me.:s. the del1ee.:tion w of cylindrical panels is higher than the
spherical ones.

(J) For rnodcrah:ly thick pands, the.: results predicted by HSOT and FSDT arc in cxcellent
agre.:elllcnl.

- ••• - - • - - - - ••• - ••••••••• - - - - • _•• - - ••' SSCF

20

__ SSFF

~~SSSF

1612

0/90/0

8

--HSOT
--FSOT
.-.- .. CST

4

1.8

1.5

/.

W 0.9

O.

0.3

0
0

a/h

Fig. 4. Non·dimensionalized.centcr deflection versus side to thickness ratio of (0/90/0) spherical
shells subjected to sinusoidal temperature distributed load for SSSF, SSCF and SSFF boundary

conditions (a(h == I. R, == RJ == Sa).
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1,2 --HSCT
-- FSCT 0/90/· ...to la~"
---- CST

1.0

_ 0.8
W

0.6

0.4

-----------

----------

-------- ---
SSCC

O'20~--.....4---.....8----'----'----..l
12 16 20

0/1'1

Fig. S. Non-dimensionalized center deflection versus side to thickness ratio of ten-layer (0/90/ ...)
spherical shells subjected to sinusoidal temperature distributed load for SSSS. SSSC and SSCC

boundary conditions (alb = 1. R. = Rl = Sa).

I.l

---------
1,0

0.9

-- HSOT
-- FSOT
..... CST

- SSFF
~. SSSF

W
0.8

0.7

0.6

0/90/· 10 lay.r,

------
- - - - -. SSCF

2016

0.5~__~__.........__--I. """"'_---.-I
o 4 8 12

a/h

Fig. 6. Non-dimcnsionalized center del1eclion versus side to thickness ratio of h:n·I~.yer (°190/ ... )
spherical shells subjected to sinusoidal temperature distributed load for SSSF. SSCf and SSFF

boundary conditions (ajh "" I. R I =; R:. ;; Sa).

(4) The mathematical tool, namely the state space approach, used to provide exact solutions
for the static thermal response problems of laminated composite shallow shells for
various boundary conditions has been found to be of great computational efficiency
and has not attained so far for this particular case.
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APPENDIX I

I1w matrix (lJl CIJI:/fici('1/ts
HSIJT

0 I 0 0 0 0 0 0 0 0 0 0

h, 0 0 h l 0 hI 0 h. h, 0 0 h.
0 0 () I 0 0 0 0 0 0 0 0
() h, h. 0 h. 0 h,o 0 0 h ll b 12 0

0 0 I) 0 0 I 0 0 0 0 0 0

0 0 0 0 0 I) I 0 0 0 0 0
(8J '" 0 0 0 0 0 0 I) I 0 0 0 0

0 b'l b,. 0 blS 0 b" 0 0 bIT b lS 0

0 0 0 0 0 0 0 I 0 I 0 0

b,. 0 0 b2• 0 b21 0 b12 b 21 0 0 b24

0 0 0 0 0 0 0 0 0 0 0 I
0 b21 b2• 0 b27 0 ba 0 0 bl9 b,. 0

wherc:

b, == (e,eJO-ele,.)!eO' b l .. (e2e,. -e,ezg)!e.

b l == (e.elO-eJeH)!e•• b• .. (ele,O-elen)!eO

b l '" (e,l'lo-ell'B)!eO' b. '" (e.el. -eJel,)!e.

b, '" (1'.1"9 -t"les-l!co. b. '" (t'l4e,.-l"2e4l)!eO

b. == (e,.eJ,-e'le.,,)/co. b,. '" (e llej9-e'lt'.O)!Co
b" =(ellej9-el2t'J.)!co. b,z = (e"t'J9-t'12t'.l)/cO

h.. =(e,e.l. -t',t'2W)/e•• blO = (t',e 20 -t'lt'n)!e.

h2, = (e,elJ -e.e2w l!t'0. b2l .. (e,eJl-e,t'n)!t'.

hB '" (e,eB -e.ea)/eo. b l • 0= (e,el' -e.en)!eo

hB = «'lOel.- e,e,,)!c•• bl.o= (e'Oe., -e..en)!c.

b" '" (elOt'., -e"t',,)!co, bn = (e,oe.o-e"e,,)!co

b z' "" (e'OeJW -e"e,,)!c•• blO 0= (e,.e'2- e 'le,,)!cO
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b" = uo(b,e21 +b,u, + b:>u: +b,.<':J +e,.)

h,. = uo(b,a, +b,.u,+e,:), b" = u,,(b.u, +b" a,+<"o)

h,. = ao(l:',. +b,en +b"e:, +b",a, +",,<1,)

h" = aok" +b,e" +b"e,., +h, ,a, +h,.,a,)

b,. = u"lt',.+b"a, +b)"u:)

Un = -I/(h.<,,, +h"e'.l +e,,)

a, = b,e" +b,oe" +e", u, = b.e" +h:.e:1 +e"

t', = A". e, = -1I(A,,+A.o)

e,=8"-e,£,,. e.=I1[,(£"+£•• )-8,, B•• ]

, , A" A"
t', = -e,£", e. = c,[jl'(I':,,+_£••»)+ If; +k-;

e, = -P'A••. e. = p',<:,£•• -8•• )
e'1 = -e:;. t!10 = Af'ltt

ell = -e4 • eL~ = BM.-c~Ef:tft

e" = -e,II(£" +"1.£•• ). e" = -11'04"

"" = IF(c:£,,-B,,). ",. c:IIJ£,,+/{~',l + i;)
"" = A" -c,D" -c,(D,) -c,F,,) +c:/I'[c,(H" -"1.11•• )-(F,: + 2!-'••»)

I t
k-;(B,,-c,E,,)- k~(lJ'I-,.,F;12)

,, (Ell Ell)",. = A,,-c,D,,-(",(f),,-e,F,,)+c;II'[ZII,:+4//•• I+Zc, R, + R,

..I"
Ri

ell = (":(1"" -",H lI ),

e,. = c:/I[c,(2H•• +Ift:J-(FIZ +1F••1I, C!J = -cillll

e," = {)" -Z/":F" +dll"
t'li = /IPl'z(F,,+F••)-<"i(IIIZ+H••)-Dll-D..1

0 1 0 0 0 0 0 0 0 0

b, 0 0 h, 0 h, h. (J 0 h,

0 () 0 1 0 0 0 () 0 ()

0 h. b, 0 h. 0 0 h. h," 0

[B] = 0 0 0 0 0 I 0 0 0 0

0 bll bIZ 0 bu 0 0 h,. h ll 0

0 0 0 0 0 0 0 I 0 0

b ,• 0 0 h" 0 h .. h,. 0 0 h,o

0 0 0 0 0 0 0 0 0

0 h:, b" 0 hll 0 0 hz, hz, 0

2..1,:

R,R,



where:

Thermal effects on laminated shells

h, = (e)e%l-e,e'9)!eO' h: (e)e .. -e:e'9}/eo

h) =0 (e)e%) -elOe)l)!eo. h, (e)eU-e,e,.}!eo

h, = (e)e%O -e,elO)!eo. h. = (e,e21-eIOeH}!CO

h, = (elleH-eIOeU}!Co. h,'" (e21e31-eIOe).)!Co

h9 =0 (e.e21-e'Oe16)!CO. hlo '" (el1e21-eIOe19}!CO

hi, = -eHlel). h l1 = -eHlel). hI) = -eu!el).

b u =0 -eu!el). bu =0 -e16lel). h 16 = (e,e,,-ele%I)/eo.

b l1 = (e Zel1-ele ..}!eo. bu = (e"e), -e,en}/eo

h.. = (e,el1-e len)!eo. h:o = (e,e'7-ele10)!eO

bll = (e7eH -e,eH)/Co• hu = (e7eU-e"eH)!CO

bu = (e7e )0-e:,eJl)/Co• bH = (e7e1,-e.eH)/CO

bB ... (e,e%.-e%,e,.}/Co. eo = ele,.-e)e'7

e) = BII • e, = -fJ(B,%+B,,}

e,'" _pzA••. e, = _pzB... e7 = A.,

e, = -ez. e. =0 -e.. elo = B..

e'l = -pzAu. e,z'" -pzBu • el) =KiA"

% B'I B12
eu = K,A,,- - ---

RI Rz

z: All 2A 12 Au
e,,'" -p K,A,,--: -----:

R, R,Rz R z

e,." _fJK;A .. +fJ(B,z + Bzz)
R, Rz

ezD " -P(D I1 +D••• eZI'" _P1B..+K;A"R,
eu" -pzD•• -K;Al!. ell" -eu
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CST

0 I 0 0 0 0 0 0

b l 0 0 bz 0 b) 0 h,
0 0 0 I 0 0 0 0

0 b, b, 0 h, 0 b, 0
(B) = 0 0 0 0 0 I 0 0

0 0 0 0 0 0 I 0

0 0 0 0 0 0 0 I

0 b. b lo 0 h ll 0 biZ JJ

where:

h, = -ez/e" h% = -e)/el' b) ... -e,!el' b, = -e,/e,
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and.

7111' ow/lid,-"t..- ,!"

f1SnT

where

FSDT

where

CST

A A. KHIJEIR et at

;', :: -e.,e•. b.:: -e,e.. b,:: -e,oe-. b,:: -e.,e,

b'l = -e:I,,'eI M_ blo ~ -t'z:/'t'!'l. b ll = -t":o.tJ',,,. b,~ = -el~/eI8

e, :: A". e, == -fJ'A ••• eJ == -(J(A" .... A•• ). e. == -H'I

,. A" A,.
e, = /hH I ,+2H•• )+ "R: -+ R-:
e. = -ejo e, = ..1.6 • e, == -/3'A",

, (A" ,./,,)e. = -fJ(H,,+28•• l. ell, == {J 8,,+{J If: + R,

D ~P'(D ~D ~('B" HI:)e,,:: ,I· e,: == -- . ,,+- ••)-- Ii; + R:

elf> =:: ~t!lJ. £'" = -e lilo t'IJoI {·I' ........ l'-at·'ot't'l

APPENDIX II

<JI ., (,-".I, - .. ,}.l;"". fl, (c"l, -,-, .•.I~l/c".

'I. " «',/~ -'-"f,li..". fh kill, ..".I, l/e".

ii, "'a,,/!/,a, +,I/,a,-/,+tJ./'lti/, +2<'".1/.)

/, = 'XI.,t,,+'XL,f,

f, == /IL,T,,+/IL.r,

. .. ~ (L, L,)~ . , T (L, L')i11:: -c,(x'L,+//'L.),,,- 'R; + R
1

lo-c,(rL.+{J-L,,,) ,- R
t
+ R, '

I.:: ('XL1-Cl'XL,)io+(:rL,-tJ.clL.)i,

I,:: (jJL.-c2/JLq)io+(/1L.-{JClLIO)it

g, == (e,I. -e",f.>/eo. 9, = (e,o/, -e"I,),'co. g, == I,/e"

g.:: (eI1I,-e,I.)/e". g,:: (el.ll-C,/sl/ca

/, ::(XL,io+:rL,i,

J~ :: /IL,f.,+/IL.T,

I,:: _(L' + L!)io_(Lo+ L')f,
R, R1 H, R:

I. == 'XL 1i o +7.L,T,

f, == IlL. To +PL. i,



wltere

and

Thennal eff.:cts on laminated shells

e,,!, fl.!: t!le,.!: II
9\ '" z-----+---+-

. !',!'" e,e'8 e,e7t!,~ e,~
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{
L I •

L,.

L~, L" L,.

L., L o, L •.
L. } ~ f;' [n l

" Q"'J{z"'}_'\" 'aC11 I~ II ...... ~ .. ~ ..... _ ...
L - ...... _, Q'A' Q'AI "1 (1.,.1, ., ., )dl,

10 4: _ 1 ~ U :: ]22


