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Abstract—The static response of cross-ply laminated shallow shells subjected to thermal loadings
is investigated. An exact analytical solution using the state space approach is presented in con-
junction with the Lévy method, for doubly curved, cylindrical and spherical shells under various
boundary conditions. Numerical results of the higher-order theory of Reddy and Liu (1985, 1987)
for center deflection of cross-ply laminated shallow shells are compared with those obtained using
classical and first-order shell theorics.

INTRODUCTION

The increased use of composite materials in aerospace and mechanical engineering struc-
tures is due to their high stiffness- and strength-to-weight ratio and to their anisotropic
material property. Studies involving the thermoelastic behavior of composite plates and
shells have been receiving greater attention in recent years [see Pell (1946), Stavsky (1963),
Reddy and Hsu (1980), Wu and Tauchert (1980a,b), Kalam and Tauchert (1978), Avery
and Herakovich (1986), Hyer and Cooper (1986) and Kardomateas (1989)]. The available
results for the thermoelastic bending of laminates allow one to infer that the closed-form
solutions involving various static problems were developed mainly for simply-supported
edge conditions, and approximate methods were used for other boundary conditions. In this
connection, a technique allowing one to obtain closed-form solutions for other boundary
conditions is needed.

The objective of the present study is to investigate the thermal response behavior of
laminated, cross-ply, composite shell panels using the third-order shell theory and to
compare the results with those obtained using the classical and first-order shell theories.
Analytical solutions of the theories are obtained using the state-space technique in con-
junction with the Lévy method, allowing one to analyze the problems for a variety of
boundary conditions. The exact solutions are presented to show the effects of variations in
geometry, shallowness, lamination parameters and boundary conditions and the shear
deformation on the thermal response of statically loaded layered anisotropic composite
shell panels.

GOVERNING EQUATIONS

The third order theory (HSDT) used in the present study is based on the following
displacement field {sce Reddy and Liu (1985, 1987)]:
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where (4, ¢, w) are the displacements along the orthogonal curvilinear coordinates such that
the &, and {.,-curves are lines of principal curvature on the midsurface { = 0. and the
{-curves are straight lines perpendicular to the surface { = 0, (u, v, w) are the displacements
of a point on the middle surface, and ¢, and ¢, are the rotations at { = 0 of normals to
the mid-surface with respect to the ¢, and ¢;-axes, respectively. The parameters R, and R;
denote the values of the principal radii of curvature of the middle surface, and y, and 7,
are the surface metrics defined in Reddy (1984). All displacement components
(u.v.w, ¢, ¢,) are functions of (¢;,&5).

Substituting eqn (1) into the strain—displacement relations of a shell referred to an
orthogonal curvilinear coordinate system, we obtain:
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Here, x,denote the Cartesian coordinates (dx, = y,d&;,i = 1,2),and ¢, = 4/h*andc, = ¢,/3.
The stress-strain relations for the kth lamina are given by :

G ¥ oW o0 0 0\ [e,—a{AT

G, 0% 0 0 g, —afAT

Ty = Q(;fz 0 0 £ 4
gy Q(ﬁ 0 £

s [ty Symm. 5 £

where Q¥ arc the material coefficients of the kth lamina in the laminate coordinate system
and aff and 2} are the cocflicients of linear thermal expansion for layer k in the laminate
coordinates; AT denotes the temperature rise in the laminate and is given by

AT = To(xy, x)+{T 1 (x1, X2). (5)

Using Hamilton's principle, the governing equations appropriate for the displacement field
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(1) and the constitutive equation (4) are derived in Reddy and Liu (1985) as:
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where g is the distributed transverse mechanical load, and N, and M,, etc., are the stress
resultants,

N nck
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The resultants are related to the total strains by the equations

N, = A, e} + Bk} +E,x}—NT
P“ = E,}£?+E/IC;)+HUK,2~—P,-T (8)

Q2= Aye] +Dyx)

01 = A58+ Dk}

Ky =Dye)+Fyr!, (j=4.5)

K, = Dy} + Fyr/ 9)

where A4,;, B, etc., are the laminate stiffnesses,
N
(Aih Bijl Di}'i Eljt F}/o Hij) = z f‘ QS)(l:Cvczicsv C‘.Cﬁ.)di,
k=t S
for i,j=1,24,535,6, (10)

and the thermal forces and moments are defined by

v P g [ et e,
{NE’ Mr, P;} -kgl J;k-l [Qs”g Q(z’? agkg (lic'c )ATdC- (ll)

For the sake of completeness and comparison, the governing equations of the classical
(CST) and the first-order (FSDT) shell theories are also presented.
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1. Classical theory (CST)

5N| aN(,

Tt 3=
X, 6.\’3
61\"6 éNz

— +

cx;  Ox,
M, + M, &M, N, N,
éxi déx,éx, éx3 R, R

0

+g = 0. (12)

The resultants N; and M, are given in eqns (7) and (8) with E, = F; =0, where the
displacement functions ¢, and ¢, in this case are to be replaced by the expressions :

ow
¢ = ~ (i=12).
2. First-order theory (FSDT)
6N| {?N(, N
dx,  dx,
l/N(, aN, _
a\; f}.“v -

(7Q|+8Q3 N} N,

ox, Vo R, TR, TIT0
‘)Ml (7M(,
o Ve =0
M, OM,
.a;:«;»-b—;—z-—gz-_(). (13)

The resultants (N, M) can be expressed in terms of the strains as in egns (8) with
E,; = F,, = 0. The resultant shear forces @, and @, are given by:

. dw v
0, = K3'444(¢2 T “‘")

tiG TR
Y ow u
Q1=K§Ass(¢x+a—x!“”§:) (14)

where K3 and K3 are the shear correction factors.

SOLUTION PROCEDURE

A generalized Lévy type solution, in conjunction with the state space approach is used
to analyze the thermal bending of cross-ply laminated shallow shells. The edges x, =0, 4
are assumed to be simply supported, while the remaining ones (x; = +a/2) may have
arbitrary combinations of free, clamped and simply-supported edge conditions. We express
the generalized displacements as products of undetermined functions and known trigono-
metric functions so as to identically satisfy the simply-supported boundary conditions
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atx.=0.b:
u=”’=—'¢'=N2=M:=P:=O for HSDT
u=wz¢,=N2=M2=0 for FSDT
u=w=N,=M,=0 for CST. (15)

A sinusoidal distribution of the thermal loadings will be considered, which in the present

case takes the form:
Ty To} .
= - X i
{T.} {T, cos ax, sin fx; (16)

where o = n/x and f = n/b in all the numerical results and the mechanical loading q is
cousidered to be zero throughout the analysis.
The displacement quantities will be represented as

u(x;, x;) U(x,)sin fx,

v(x,,x;) V(x,)cos fix;

w(x,.x;) » = < W(x)sinfx; ». (17
¢ (xy.x2) X(x)sin Bx,
$2(x,,x2) Y(x,)cos fx,

The representation (17) is valid for HSDT, FSDT and CST. Substitution of eqn (17) into
the governing equations of the three theories, we obtain five differential equations for HSDT
and FSDT and three differential equations for CLT. in order to represent the system of
differential cquations in the form needed for the state-space approach, the following
variables are introduced

HSDT
Zy=U, Zy=U, Zy=V, Z=V, Zi=W, Zy=W,
Zi=W", Zy=W", Zy=X, Zw=X, Zu=Y, Z,=Y"; (18)
FSDT
Z,=U, Z,=U, Zy=V, Z,=V', Zs=W, Z,=W',
Z,=X, Zy=X', Zy=Y, Z,=VY; (19)
CST

Zl=U, ZZ=U,, Z3=V, 243V',
Zi=W, Zg=W', Z,=W", Zy=W", (20)

where the primes over the variables indicate differentiation with respect to x,. The differ-
ential equations take the form:

Z' =BZ+r o))

where the matrix [B] is defined in Appendix I for HSDT, FSDT and CST. The load vector
ris defined as:
HSDT

r={0.g,sinax,,0,g, cos ax,,0,0,0, g; cos ax,,0, g, sin ax,,0, g, cos ax,}” (22)
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FSDT
r={0.g, sin 2x,,0,g- cos 2x,0, g, cos xx,.0. g, sin 2x,,0, g5 cos 2x,} (23)
CST
r=0.g,sin xx,,0.¢g, cos xx,.0.0.0. g, cos xx,} " 24)
where the coefficients g,.g... .., gs are defined in Appendix II for the three theories.

The solution to eqn (21) is [see Reddy and Khdeir (1989. 1990)]

~

Z=e”"{K+Je"’"rdn}. (25)

Here K is constant column vector to be determined from the edge conditions while ¢®*t is
expressed as:

et 0

e?" = [S] R S (26)
0 et

where, n = 12 for HSDT, n = 10 for FSDT and n = 8 for CST. 4, denote the distinct
cigenvalues of [B], while [S] denotes the matrix of eigenvectors of [B].

The boundary conditions for simply-supported (§), clamped (C) and free (£) at the
edges x, = +a/2 for the three theories are:

HSDT
Siv=w=¢,=N, =M =P =0
Ciu=rv=w= :7_"" =¢, =¢,=0
dxy
F-Ny =M, =P =N, =M,-c,P,=0
Q,-c K, +‘<(:[\: + ?{) =0 (27)
FSDT
S:v=w=¢,=N, =M =0
Ciu=vr=w=¢, =¢,=0
F:N =M, =Q, =N,=M,=0 (28)
CST

S;e=w=N,=M,=0

Ciu=v=w= -=0

=0. 29)

NUMERICAL RESULTS AND CONCLUSIONS

Numerical results are displayed to obtain the trend of variation in the thermal response
with the variation of geometry, lamination and boundary conditions. The non-dimension-
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alized center deflection of cross-ply cylindrical. spherical and doubly-curved panels for the
lamination schemes (0,90), (0/90 0) and (0/90/... 10 layers) have been displayed, for
various combinations of boundary conditions in Tables 1-3 and Figs 1-6. It was assumed
that the thickness and the material for all the laminae are the same, having the following
characteristics :

E[ =25£:. G” =G|3 =0.5£:. Gg3=0.252. Via '—=025. &2/1| = 3,

Table 1. Non-dimensionalized center deflections # of {0/90) cylindrical shells subjected to sinusoidal
temperature distributed load for various boundary conditions (¢/6 = 1,a’h = 10, R, = ®, R; = R}

Rja Theory §8SS SSSC S§SCC SSFF SSFS SSFC
HSDT 1.1235 0.7441 0.5158 1.2617 1.2001 0.7750

5 FSDT 1.1248 0.7551 0.5297 1.2657 1.2028 0.7858
CST [.1280 0.7091 0.4703 £.2550 1.2013 0.7446

HSDT 1.1421 0.7544 0.5177 1.2680 1202 0.7760

10 FSDT 1.1439 0.7658 0.5319 1.2722 1.2142 0.7871
CST 1.1447 0.7161 0.4702 1.2616 1.2117 0.7435

HSDT 1.1482 0.7583 0.516% 1.2694 1.2145 0.7738

50 FSDT 1.1501 0.7699 0.5312 1.2738 1.2176 0.7851
CST 1.1501 0.7183 0.4687 1.2638 1.2151 0.7403

HSDT 1.1485 0.7586 0.5164 1.2693 1.2145 0.7728

Plate FSDT 1.1504 0.7703 0.5307 1.2736 1.2176 0.7842
CsT 1.1504 0.7{83 0.4681 1.2639 1.2152 0.7392

Table 2. Non-dimensionalized center deflections w of (0/90) spherical shells subjected to sinusoidal
temperature distributed load for various boundary conditions (aib = 1, a/h = 10)

Ria Theory S§SSS SSSC ss¢C SSEE SSES SSFEC
HSDT 1.0545 4.6737 0.2148 1.1965 11310 0.7101

5 FSDT 1.0546 0.6R08 0.2097 L1987 1.1322 07173
CST 1.0660 0.6549 0.2540 1.1909 1.1366 0.6918

HSDT 1.1235 0.7287 0.3677 1.2524 1.1935 0.7518

i0 FSDT 1.1248 0.7388 0.3711 1.2561 1.1960 0.7617
CST 1.1280 0.6965 0.3666 1.2449 {.1946 .7236

HSDT 1.1475 0.7550 0.4897 1.2693 1.2140 0,7705

50 FSDT 1.1493 0.7665 1.5020 1.2736 121 0.7817
CST 1.1494 0.7157 0.4499 1.2632 1.2144 0.7375

HSDT 1.1485 0.7586 0.5164 [.2693 1.2145 0.7728

Plute FSDT 1.1504 0.7703 0.5307 1.2736 1.2176 0.7842
CST 1.1504 0.7183 0.4681 [.2639 1.2152 0.7392

Table 3. Non-dimensionalized center deflections w of ten-layer (0/90/ . . ) cylindrical shells subjected
to sinusoidal temperature distributed load for various boundary conditions (a/b = 1, ujh = 10,
R] = L, R} = R)

Ria Theory SSSS SSsC SSCC SSFF SSFS SSFC
HSDT 1.0216 0.7032 0.4849 1.0666 1.0480 0.6854

5 FSDT 1.0215 0.7087 0.4917 1.0670 1.0482 0.6909
CST 1.0247 0.6189 0.3905 1.0643 1.0492 0.6206

HSDT 1.0303 0.7082 0.4874 1.0705 1.0537 0.6884

10 FSDT 1.0302 0.7138 0.4942 1.0709 1.0539 0.6940
CST 1.0310 0.6214 0.3913 1.0674 1.0533 0.6218

HSDT 1.0332 0.7099 0.4830 1.0718 10555 0.6892

50 FSDT 1.0330 0.7156 0.4950 1.0722 1.0557 0.6949
CST 1.0331 0.6222 0.3914 1.0680 1.0546 0.6219

HSDT 1.0333 0.7101 0.4880 1.0718 1.0556 0.6892

Plate FSDT 1.0331 0.7157 0.4949 1.0722 1.0558 0.6949
CST 1.033¢ 0.6222 0.3914 1.0681 1.0546 0.6219

SAS 29:5-1
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Fig. |. Non-dimensionalized center deflection versus side to thickness ratio of (0/90) spherical shells
subjected to sinusoidal temperature distributed load for $588, SSSC and SSCC boundary conditions
{afb =1, R, = R, = Sa).

The shear correction factors (K3 = K3) for the first-order shear deformation shell theory
{FSDT) are taken to be 5/6. The following non-dimensionalized deflection parameter has
been used throughout the calcufations:

10
L e
W w(()'h/”)az,'f,b:'

where T, and ¢ arc considercd to be zero. The notation SSFC, for example, means that the
cdges x, = 0, b are simply supported, x; = —a/2isclamped and x, = 1/21is frec. In addition
to the effects played by the boundary conditions on the thermal response, the numerical

13t
Lir
>~ SSFF
W SSSF
w
o9t
o7
SSCF
fot.3 i J i
5) ) 8 12 16 20

a/h

Fig. 2. Non-dimensionalized center deflection versus side to thickness ratio of (0/90) spherical shells
subjected to sinusoidal temperature distributed load for SSSF, SSCF and SSFF boundary conditions
(a/b = 1. R, = R; = 5a).
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o8t

=!

0.6}

o4}

o2¢

a’h

Fig. 3. Non-dimensionalized center deflection versus side to thickness ratio of (0/90/0) spherical
shells subjected to sinusoidal temperature distributed load for §SSS, SSSC and SSCC boundary
conditions {(a/b = 1, R, = R, = Sa).

resufts allow one to conclude the following :

(1) For thick pancls the effect of transverse shear deformation is always to be incorporated
into the analysts, because CST underpredicts the panel response when compared to
FSDT and HSDT. An exception to this observation is provided by the SSSS boundary
conditions. The deflections predicted by the classical shell theory differ by about 6%
at the most.

(2) For all lamination schemes, the deflection w of cytindrical panels is higher than the
spherical ones.

{3) For moderately thick panels, the results predicted by HSDT aad FSDT are in excellent
agreement,

0.3k

a/h

Fig. 4. Non-dimensionalized center deflection versus side to thickness ratio of (0/90/0) spherical
shells subjected to sinusoidal temperature distributed Joad for SSSF, SSCF and SSFF boundary
conditions (a/h = 1, R, = R, = Sa).
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1.2r — ST
——FS0T  /90/...-i01
—meeCST ayers
1.0
- 0.8F
w
O.6}
Q4r
0'2 " A A, " 1
o) 4 8 12 16 20

a/h

Fig. 5. Noa-dimensionalized center deflection versus side to thickness ratio of ten-layer (0/907...)
spherical shells subjected to sinusoidal temperature distributed load for $S5S, SSSC and $SCC
boundary conditions (a/6 = 1, R, = R, = 3a).

LiF

1.of ==
s HSOT SSFF
—— 50T 585F

09_ ----- CST
0/90/---- 10 tayars

w

0.8t

o.7}

o.6F

(o3 " 2 " A \

o} 4 8 12 13 20

a/h

Fig. 6. Non-dimensionalized center deflection versus side to thickness ratio of ten-layer (9;90/...)
spherical shells subjected to sinusoidal temperature distributed load for SSSF, SSCF and SSIFF
boundary conditions (u/h = |, R, = R, = Su).

(4) The mathematical tool, namely the state space approach, used to provide cxact solutions
for the static thermal response problems of laminated composite shallow shells for
various boundary conditions has been found to be of great computational efficiency
and has not attained so far for this particular case.
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APPENDIX |

The matrix {B] cocflicients

HSDT
[0 00 0 o 0 0 o0 o]
b, b, 0 b by b 0 0 b,
0 6 1 0 0 6 6 0 o0 o
6 by by 0 b, 0 b O O by by O
0 6 0 ¢ I © ©0 0o o o o
o 0 0 0 o 0 1 0 0 0 o0 0
Bl=1o 0o 0o 0o 0o o o o 0 0 o0
0 by by 0 by O by 0 0 by by O
6 0 ¢ 0o o0 0 o0 6 1 o 0
by 0 0 by O by 0 by by O O by
0 0 ¢ 0 0 0 0 0 6 0 o0 1
0 by by 0 by 0 by 0 0 by by O
where:

by = (eres0—esesdien. by = (e1e55—e,055) e,

by = (esei—esesslien. by ={ese55—ese5,) eq

by = (egeso—eyeys)es, by = (esesg—eye5) e,

by = (evern—e12¢40)/co. by = (€400 —€11¢,,)/eq

by = (eenn—ee0)ce, b= (€133~ 2¢400)/0y
biy = (ees0—e€n)/co. bz = {e,se;5—€1e0)/co
bis = (esesa—erem)fen, by = (€609~ €:035)/eq
by = (103 —esern)en, byy = (€103 —ese ) ey
by = (eess—exendieg. by = (e, —esey)/eg
brs = (e10€s6~Coe51)Cor b1s = (€r0€us —e e51)/cs
byr = (€10€45 — 16850} /Co. by = G R NI I

bis = (er0€in—€11€53)fco. byg = (g1 —ey5e35)/eg
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biy = aplbiey +bia,+bysay+bioey +e10)
by = aglbsa, +beaz+ey:), by =ag(bya, +bas+e.)
hio=agley+biey +bae +ba, +hagas)
bis=agle;+biey +byes+bya) +ba))
by = aglerg+b2a, +bya;)

€g = €€,y =€ €y, Oy = €837 € ¢354

ay = ~ b, +byer+ey5)

a; = bres +byertern ar = by +bey e,

e, = Ay ey = —Bld s+ Ay

ev= B —c:E. e, = BlAE+ Ev) — B2 Byl

. A A,
es =~ B, e = B(E L+ 2E,)]+ ‘R?I“"\" ‘kl—:
' 2

€= ~fdee €5 = B B0 — Byy)
€y = —€, €15 =A,
€ =~ €= B«h‘ctghﬁ

~CBE +2EL). e = ‘ﬂ:«'{:z

tt

€5y

» Ay A
e = Bc By —B.), e = (':B‘EH-Q-[)‘( 2, -_'_:)
! ! R, " R,
7= Ay Dy~ (Dys o Fo ) 0 ol Hyy = 2H o) —(F+ 2

1 . ! .
- R_,(B” = &) - R“:(’}l:“"xﬁn)
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